Toward Large-eddy/reynolds-averaged Simulation of Supersonic Combustion
نویسندگان
چکیده
While flamelet-based progress variable models have matured to production-level in recent years for incompressible flows, little development toward compressible formulations of the flamelet model has ensued. For supersonic and hypersonic flows exhibiting combustion, an applicable flamelet-based combustion model must reflect the compressible nature of the flow, the tight coupling of the flow and flamelet equations, and the problem of multiple flamelet boundary conditions This paper describes recent work toward developing a compressible formulation for use with large-eddy/Reynolds-averaged simulations and implementing flamelet-based progress variable models in a production-level research code frequently used to simulate high-speed reacting flows. The proposed model relies on first solving transport equations for momentum, species mass fraction, and temperature for an axisymmetric opposed-flow diffusion flame for a range of strains and pressures. The solution space is tabulated and subsequently parameterized by mixture fraction, progress variable, and pressure. At runtime, transport equations for mass, momentum, energy, mixture fraction, and progress variable are solved, and at each time step, relevant chemical properties are retrieved from the flamelet table. By mapping the chemistry to a small set of tracking scalars, finite-rate simulations of high-speed reacting flows are made comparable in computational cost to a frozen-chemistry simulation.
منابع مشابه
Large-eddy/Reynolds-averaged Navier–Stokes simulation of a supersonic reacting wall jet
This work presents results from large-eddy/Reynolds-averaged Navier–Stokes (LES/RANS) simulations of the well-known Burrows–Kurkov supersonic reacting wall-jet experiment. Generally good agreement with experimental mole fraction, stagnation temperature, and Pitot pressure profiles is obtained for non-reactive mixing of the hydrogen jet with a non-vitiated air stream. A lifted flame, stabilized ...
متن کاملNumerical Study of Reynolds Number Effects on Flow over a Wall-Mounted Cube in a Channel Using LES
Turbulent flow over wall-mounted cube in a channel was investigated numerically using Large Eddy Simulation. The Selective Structure Function model was used to determine eddy viscosity that appeared in the subgrid scale stress terms in momentum equations. Studies were carried out for the flows with Reynolds number ranging from 1000 to 40000. To evaluate the computational results, data was compa...
متن کاملLarge eddy simulation of propane combustion in a planar trapped vortex combustor
Propane combustion in a trapped vortex combustor (TVC) is characterized via large eddy simulation coupled with filtered mass density function. A computational algorithm based on high order finite difference (FD) schemes, is employed to solve the Eulerian filtered compressible Navier-Stokes equations. In contrast, a Lagrangian Monte-Carlo solver based on the filtered mass density function is inv...
متن کاملTurbulent Combustion Simulation by Large Eddy Simulation and Direct Numerical Simulation
Combustion is a natural phenomenon. It happens in forest, automotive engine and gas cooker. In Computational Fluid Dynamics (CFD), the combustion phenomenon complies with a set of partial differential equations. According to the resolution scale, from big to small, the simulation methods in combustion are Reynolds Averaged Navior Stokes method (RANS), Large Eddy Simulation (LES), and Direct Num...
متن کاملPrediction of Pollutant Emissions from Industrial Furnaces Using Large Eddy Simulation
Accurate prediction of pollutant emissions from turbulent combustion around complex geometries is of great practical interest. Here, an industrial furnace with rich-burn/quick-quench/lean-burn combustion for NOx reduction is simulated. Large eddy simulation (LES) is employed as the simulation tool since it outperforms Reynolds-Averaged-Navier-Stokes (RANS) simulations in capturing large-scale u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013